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Abstract 

The interaction of a synchrotron beam incident on a 
'perfect' monochromator crystal, M, and then on a 
small single crystal, c, is examined and the resultant 
2D shape in Aw, A20 space of Bragg reflections from 
c is deduced. This allows (a) identification of the 
components intrinsic to M which contribute to the 
shape, namely its effective aperture and angular band- 
pass, and (b) prediction of the change of shape with 
0c. Projection of the 2D shape onto the Ato axis yields 
the corresponding 1D 'counter' profile and shows 
that, for Gaussian-like components, the full width at 
half maximum (FWHM) of the profile is [p2+ 
q2(t--tmin)2] 1/2 where p and q are constants, t =  
tan Oc/tan OM and tmin corresponds to the minimum 
dispersion condition. It is suggested that, for similar 
conditions, the relationship determining scan range 
should be of a similar functional form rather than 

• 0 
the conventional linear relationship. 

Introduction 

The angular divergences involved in synchrotron 
beam lines are considerably smaller than those associ- 
ated with conventional X-ray sources• Indeed, one 
might be inclined to conclude, following the dis- 
cussion in Willis (1960), relating to divergence (a) --- 
0 °, that this near-parallelism could lead to the 
minimum dispersion condition for the 'counter' 
profile in the synchrotron-radiation (SR) case occur- 
ring nearer t = - 2  than t = -1 ,  t being tan 0c/tan OM. 
However, as we will show, this does not appear to 
be the case. 

Nevertheless, the smaller divergence does provide 
a greater possibility, in single-crystal diffractometry 
on a beam line, of deriving quantitative estimates of 
the reflectivity curves of specimen crystals which, for 
'imperfect' crystals, is closely allied to the mosaic 
spread, Mathieson (1984a). Even so, the influence of 
components intrinsic to the system, such as the 
effective aperture (illuminated length) of the mono- 
chromator crystal and the corresponding angular 
bandpass, cannot be ignored. It is therefore useful to 
establish their influence on the shape of Bragg reflec- 
tions, especially in respect of change with scattering 
angle of the specimen crystal. This information can 
then be used to derive realistic estimates of reflectivity 
curves by deconvolution of experimental data, cf. 
Schneider (1977). 

For the combination of a 'perfect' monochromator 
crystal, M, and a specimen crystal, c, of nominally 
zero mosaic spread, the 2D shape in Aw, A20 t°) space 
(for terminology, see Mathieson, 1983) of the Bragg 
reflection from c is deduced and its change with 0c 
is studied• The corresponding change in the more 
generally used 1D 'counter' profile is then derived 
and compared with published data. 

From the conclusions concerning counter profile 
width, observations are offered on a form of relation- 
ship, different from the accepted linear one, which 
would appear to be appropriate to determine scan 
range for small-crystal measurement on synchrotron 
sources. Use of this relationship should ensure 
uniform rather than variable truncation, e.g. 
Denne (1977), and hence estimates of integrated 
intensity which are consistent from reflection to 
reflection. 
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The m o n o c h r o m a t o r / s p e c i m e n  crystal  interact ion 

In a synchrotron beam line, the source aperture, 
effectively of outer dimensions ca 1-2 mm (Brook- 
haven National Laboratory, 1985), is at a distance of 
decametres from a monochromator system consisting 
of 'perfect' crystals (usually two in 'parallel' configur- 
ation) and sometimes including a cylindrical or 
toroidal mirror. This combination results in a beam 
convergent on the small-single-crystal specimen and 
comprising a range of wavelength, which, although 
small from the viewpoint of a laboratory set-up, is 
not insignificant in the context of experiments with 
SR. This configuration can, for our discussion, be 
replaced by the simpler arrangement shown in Fig. 
1, consisting of an extended-face monochromator 
'perfect' crystal, M, i.e. with 'zero' mosaic spread but 
still involving intrinsic Darwin angular width. The 
central beam from the source, of wavelength 2to, 
diffracts at the Bragg angle OM from the central point 
Mo on the surface of M, towards the specimen crystal, 
c (considered effectively as a point). Crystal c is also 
considered for present purposes to be 'perfect'. 
Associated with any point on the monochromator 
surface, such as the outer-limit point, M+, is a poten- 
tial 'acceptor fan', of wavelengths adjacent to ho, the 
potential range, in this case, being shown in the insert 
in Fig. 1. Each ray of the 'acceptor fan' proceeds after 
diffraction from M+ along the line M+c at an angle 
0M + A0M tO the surface of M. As Fig. 1 shows, each 
ray of the 'acceptor fan' is associated with a specific 
wavelength but the range of wavelength is limited by 
the Darwin width of M and the intensity passed on 
depends on whether the ray 'sees' the source. The ray 
M+c is therefore associated with a small band of 
wavelengths. Since we are dealing here only with the 
interaction at the surface of M, i.e. no penetration of 
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Fig. 1. Interaction of the beam incident on a monochromator crys- 
tal, M, and diffracted to the specimen crystal, c. For each point 
on M, an 'acceptor fan' of  beams whose wavelength deviation 
from Ao is designated as zaA+,, is diffracted and passes to c. M+ 
is a typical point, and the beam M+c is at an angle 0M + A0M 
to the surface of M. M o is the central point of M and the 
corresponding angle is 0M. The region of scattering which con- 
cerns us is the 'parallel' region, (-)o),.. 

M, the angle AOM is determined entirely by the posi- 
tion of the point M+. To establish a wavelength 
reference, let us identify the deviant wavelength of 
that component of the potential 'acceptor fan' associ- 
ated with the symmetrical reflection at M+ with the 
scattering angle 20M +2AOM as dh+2, see Fig. 1 and 
inset. This gives the general relationship 

AOM = (AA+ffAo) tan OM. (1) 

Note that AOM is a fixed value for each point on M. 
Depending on whether it 'sees' the source,/1A+2 may 
be inside or outside the operational wavelength deter- 
mined by the actual experimental arrangement. 

Following the terminology of Allison & Williams 
(1930), diffraction from M establishes the + scatter- 
ing direction so that the subsequent scattering from 
c in the region of the so-called 'parallel' condition, 
which is our main concern, is in the - scattering 
direction; to avoid the confusion of increasing nega- 
tive angles, we identify aw,. and A2O~ °) in this region 
by ( - ) .  (-)Awc corresponds to the fractional displace- 
ment of the specimen-crystal rotation in the region 
of the particular Bragg reflection under consideration 
while (-)A20~ °) corresponds to the fractional dis- 
placement across detector space. Note that 20 iden- 
tifies the detector axis and does not correspond to 
2 x 0. The superscript to 20 indicates the scan mode 
linking the detector axis and the specimen-crystal 
axis, s = A20/aw, see Mathieson (19.83); s = 0 means 
the detector is stationary (the so-called w-scan mode). 
In the region of a Bragg reflection, Fig. 1, the 
appropriate general relationship (Mathieson, 1985a) 
is given by 

(--)Awc=--AO, + AOM. (2) 

AS shown above, the beam M+c consists of a band 
of wavelengths, so (2) may also be formulated (drop- 
ping the subscript c) in terms of wavelength disper- 
sion as 

(-)Aw = (k2t;/ao) tan 0c + (aA+2/2to) tan OM, (3) 

where AA+2 is fixed (as the symmetrical reflection 
from M) and AAi is variable, i.e. it can correspond 
to any wavelength within the 'acceptor fan'. This can 
be normalized in terms of t = tan 0titan 0M as in 

( - ) a t o = ( a h + f f h o ) t a n  OM[(aA,/aA+2)t+l] (4a) 

= k'[(AA,/AA+2)t + 1], (4b) 

where k ' =  (Ah+ffho)tan OM. For Mo, AA+z=0 and 
(3) and (4) simplify to ( - )Aw = (Ahffho)tan 0c. 

For A20 (°), the relationship corresponding to (4b) 
is therefore 

(-) /120 (0)= k'[2(/1XffAh+2)t+ 1]. (5) 

We treat here only aw,/120 (o) space, i.e. the w-scan 
mode, other scan modes can be readily derived, see 
Mathieson (1983). 
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The resultant shape in At,.), A20 t°) space 

The change of the wavelength band associated with 
any point on M and its dispersion as 0c changes and 
how these factors determine the shape of the Bragg 
reflection in diffraction space can be appreciated most 
readily in diagrammatic form in Ato, A20 (°) space, 
Fig. 2. 

In Fig. 2, the origin, O, corresponds to the central 
beam from Mo through c for wavelength ho. O' corre- 
sponds to the ho component of the beam from M+ 
through c while O" is that for M_. The line O'OO" 
is at 45 ° to the Ato and A20 (°) axes. Note that for 
0~ = 0 °, the dispersion of c is zero, so all components 
of the wavelength band passed by M+ coincide at O', 
similarly those for Mo at O and those for M_ at O". 
Hence the shape of the Bragg reflection for this condi- 
tion, including the wavelength bands dispersed by 
the monochromator M, is a straight line at 45 ° to the 
two axes, see Mathieson (1985b). 

Again from Fig. 2, as 0~ increases and moves into 
the 'parallel' region, i.e. as (-)Ato¢ increases (Fig. 1), 
the wavelength components from M+ will be disper- 
sed along the line Z'+O'Z" while those from M_ will 
be dispersed along the line Z"O"Z~ and those from 
Mo along Z_OZ+. In detail, any wavelength associ- 
ated with M+ which is positive deviant from ho is 
displaced along O'Z'_ while negative deviant corn- 

I ° 
Fig. 2. PQRS is the outer-limit shape of a typical Bragg reflection 

in Ato, A20 (°) space for a value of t (= tan 0c/tan OM ) circa --0"9. 
The origin of /1oJ, /120 (°~ space is O and corresponds to the 
central beam from Mo through c for 0c=0 °, while O' (O") 
corresponds to the equivalent beam from M+ (M_) (outer limits 
of  M). So the line O'OO" corresponds to the shape for 0~ = 0 °, 
i.e. a straight line at 45 ° to the Ato and/120 (0) axes. With increase 
of 0c into the 'parallel' region, Fig. 1, any wavelength associated 
with M÷ which is positive deviant from A0 is displaced along 
O'Z'_ while negative deviant wavelengths are displaced along 
O ' Z ' .  Similar relationships hold for M_ and for Mo along 
Z~O"Z"_ and Z÷OZ_.  Thus, for the reference deviant 
wavelength /1A÷2, A' (A") corresponds to t = - 0 . 5  and B' (B") 
to t = -1.0.  PQRS illustrates the situation for t -  0"9 and a small 
wavelength band passed by M. PQ corresponds to the 
wavelength band /1h+~. 2 t o  AA+2 , SR to AA_2 to /1k_~. 2 while 
N_ N+ corresponds to /1A-0.4 to AA+0.4. The composition of the 
deviant wavelength band changes from PQ to RS but the band 
size is constant. 

ponents are displaced along O'Z'+. The ho component 
remains undisplaced at O'. For M_, positive deviant 

/-'),,7 t, components are displaced along ...._.+ while negative 
deviant components are displaced along O"Z'__, the 
ho component remaining undisplaced at O". For Mo, 
positive deviant components are displaced along OZ+ 
and negative deviant components along OZ_. 

From the form of (4b) and (5), the lines Z'+O'Zk, 
Z,,__r3,,7, ._. ~+ and Z_ OZ.+ are scaled linearly in t relative 
to the line origins, O', O" and O respectively. Thus, 
in respect of the reference deviant wavelength AA÷2, 
A' (A") corresponds to t = - 0 . 5  and B' (B") to t-- 
-1 .0  (see Mathieson, 1985a). For other deviant wave- 
lengths, Aki, the linear scale changes proportionally. 

The disposition of any wavelength band in ato, 
A20 (°) space can be determined for any nominated 
value of t. For illustration, consider a case for a value 
of t (say) circa -0 .9  where the wavelength band from 
M+ corresponds to AA+I.2 to AA+2, i.e. points P and 
Q respectively on O'Z' .  The corresponding band for 
M_ will be AA_2 to AA_1.2, i.e. points S and R respec- 
tively on O"Z", while, for Mo, it will be Ah_o.4 to 
AA+o.4, i.e. points N_ and N+ respectively. These 
combined conditions correspond to the parallelogram 
PQRS in Fig. 2. 

The outer-limit shape, PQRS, is therefore deter- 
mined by two components. The first is due to the 
monochromator-system aperture (or illuminated 
length on M) and how this is modified by the interac- 
tion of the dispersion of the specimen crystal. This 
component lies within the limit lines Z'+O'Z" and 
Z'_' n, ,7" • ., ~+ and corresponds to the centre line of the 
wavelength bands, namely L'OL". The second is due 
to the equivalent angular size of the wavelength bands 
passed by the monochromator system and how these 
are dispersed by c. This corresponds to N_ON÷; and 
depends, inter alia, on the 'Darwin width' of M. 

These two components both vary with t but in 
different ways. Thus the intensity distribution within 
PQRS will correspond to the multiplication of the 
two distributions, one parallel to L'OL" and the other 
parallel to N_ ON+. With change of t, the first distri- 
bution rotates about O starting from the line 0 '00" ,  
moving to A'OA", then through L'OL" to B'OB" and 
so on, its limits always following the lines Z'+O'Z'_ 
and Z"_O"Z~. The second distribution starts from 
zero dimension at O'OO" for t = 0 and, with increase 
of t, displaces along the outer-limit lines while 
increasing its width proportionally with t. So the 
shape of a Bragg reflection both rotates (first com- 
ponent) and expands (second component) with 
increase in t (and hence in 0c). It should be noted 
that, although the wavelength band size remains con- 
stant from PQ to RS, its wavelength composition 
changes steadily. For more than two components, e.g. 
if the contribution due to the mosaic spread of c has 
to be included, convolution is involved in determining 
the distribution within the outer-limit box shape. 
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Projection of the 2D shape on Aw - the ID 'counter' 
profile 

The conventional 1D 'counter' profile is determined 
by use of a relatively large aperture in front of the 
detector and corresponds to projection of the 2D 
shape onto the Ato axis, Mathieson & Stevenson 
(1986). It may also be derived by convolution of the 
projections on Ato of the individual components, cf. 
Fig. 6 in Mathieson (1984a). If, for illustration, we 
assume that the distributions corresponding to the 
two components treated in the previous section are 
Gaussian, then we can identify the form of their 
variation with t in terms of their FWHM. 

From the last section, one can see that, for the first 
component, the following relationship holds 

Ato = a ( - l  + l' t), (6) 

where a is the FWHM of the monochromator aper- 
ture distribution at t = 0 (which can be determined 
in practice by replacing the specimen crystal by a 
small pinhole aperture and scanning in A20 (°) with 
a fine slit in front of the detector). In terms of the 
example above, l' corresponds to the ratio of the 
median deviant wavelength to the deviant wavelength 
for the symmetrical reflection, i.e. (A/~+l.6/A,~+2), and 
the zero-dispersion condition will be at l ' t m i  n = 1 or 
train = 1/l ' .  SO, in this example, f o r  this component  
alone, the zero-dispersion condition would be at t = 
2/1.6 = 1-25, not 1.0. 

The second component will correspond to the pro- 
jection of the wavelength band so the form of the 
FWHM, if Gaussian, will be 

Ato = l"t, (7) 

where l", in the example above, will correspond to 
the size of the (constant) wavelength band, i.e. 
(zl~+2- A~+l.2)/~o. 

When convoluted together, this leads to a FWHM 

A t o = { [ a ( 1 - - 1 ' t ) ] 2 + [ l " t ] 2 }  I/2 (8) 

and, in this case, tmi, = 1 / [ l '+  (l")2/(a21')]. 
Alternatively, if one is not concerned about the 

specific physical meaning of the parameters in (8), 
the FWHM relationship can be formulated in general 
terms as 

Am = [p2 -I- q2( t-- tmin)2] 1/2, (9) 

tmi, corresponding to the value of t where the 
wavelength dispersion is at a minimum. 

To demonstrate the application of such a relation- 
ship, we can use some recent data of H6che, Schulz, 
Weber, Belzner, Wolf & Wulf (1986) derived from 
measurements on an Si 'perfect'-crystal specimen so 
that the intrinsic influence of specimen mosaic spread 
is avoided or at least minimized. In Fig. 3, the data 
on profile widths, including the estimates of devi- 
ations, plotted vs O~ in Fig. 2 of H6che et al. (1986) 

have been replotted vs t. A little trial and error yields 
a close fit, the full line in the figure, corresponding 
to p = 3.075(x0.003°), q = 1.278(x0.003 °) and train = 
--1"2. 

Scan range and profile size 

Where the distributions for the individual com- 
ponents each consist of a single peak then a relation- 
ship of the type in (8) or (9) should be applicable to 
the change of the combined profile shape with t. When 
this situation holds, a similar form of relationship, 
scaled by an appropriate constant, should be applic- 
able for the setting of scan range since consistently- 
truncated measurement of integrated intensity from 
reflection to reflection would then hold. 

This constitutes a slightly different procedure for 
establishing scan range from the conventional linear 
relationship, a + b tan 0c, or more appropriately in 
this case, a '+b ' ] t - tm in[ .  Obviously, for It] >> train, the 
two procedures would be largely indistinguishable in 
operational terms but where a (a') and b (b') are of 
similar magnitude they would deviate significantly. 

Where a component involves two (or more) peaks, 
the profile (and scan-range) relationship will require 
modification because the separation between the 
peaks will have to be included as a linear contribution. 
For most synchrotron circumstances, however, the 
components consist of single peaks. 

H6che, Schulz, Weber, Belzner, Wolf & Wulf 
(1986) have proposed a similar relationship for profile 
width but have referred it to a minimum at 0c = 0 °, 
which corresponds to t = 0. 

Discussion 

The formulae for profile width and scan range in (8) 
and (9) are based on Gaussian shapes for the com- 
ponents. However, it should be stressed that it is only 
by experimental examination in Ato, A20 Cs) space of 
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Fig. 3. Plot o f  the prof i le F W H M  os t. The data arc der ived f rom 
HSche el al. (1986). The con t inuous  l ine represents the re lat ion-  
ship OJ=[p2+q2( t - - tmi , )2 ]  ~12 wi th  p=3"075(×0"003°), q =  
I "278( ×0"003 °) and tin, . = - 1.2. 
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at least a selection of Bragg reflections over the work- 
ing range of 0c that one can identify and determine 
the actual distributions corresponding to the various 
components. This information is necessary for one to 
be reasonably certain concerning the expected 
changes in 1D profile shape and the more tricky 
question of where to set the limits for the scan range. 

To establish the estimates used for the 'profile' size 
or scan range, it would be advisable to carry out 
selected data measurement not only in the negative 
t region but at least part way into the positive t 
( 'anti-parallel ') region in order to establish the proper 
functional form of the curve, cf  Fig. 3. The impor- 
tance of tmin as a reference point, equivalent to 0~ = 0 ° 
in the non-monochromator  situation, should be 
noted. The location of tmin is determined by the range 
of the 'acceptor '  fan and the effective size of the 
source. 

The value of train for 'film' profile measurement, 
i.e. in the region of A ' O A "  in Fig. 2 (Mathieson & 
Stevenson, 1986), whether by the use of film or a 
position-sensitive detector is of course different from 
tmi n for 'counter '  profiles which is in the region of 
B'OB"  since the former is in the region of t approxi- 
mately half that of the latter. As shown above, neither 
require to be at t = - 0 - 5  or -1-0  exactly. 

The significance of tmi n as a reference point for 
profile measurement has been stressed. It should also 
be noted that the wavelength dispersion inverts at 
this point, a feature of concern only if the wavelength 
band distribution is not symmetrical - which may be 
the case for monochromatized synchrotron radiation 
because of the role of the intensity distribution under 
dynamical conditions. 

As mentioned at the beginning, the effect of mosaic 
spread of the specimen crystal has not been included 
specifically in the present treatment. In the case of a 
1D profile, the contribution from the mosaic spread 
of c would be included in p in (9). Hence, in respect 
even of the data presented by HSche et al. (1986), 
the Darwin width of the specimen 'perfect' crystal 
(and its physical dimension) would make a contribu- 
tion. From Fig. 3 of H6che et at., the contribution 
from the physical dimension of the specimen crystal 
of ca 100 lxm appears not to be gross. In any case, 
the only way in which one could resolve these matters 
would be by 2D Aw, A20  (°) measurements and iden- 
tification of the relevant loci, see Mathieson (1982). 
With a scan mode other than to scan, the locus in 2D 
space changes relative to the Ato axis. 

As mentioned in the Introduction, one might expect 
from consideration of Fig. 1 that, with the small 
divergence of the synchrotron beam, the beams 
parallel to the central beam, such as AA+I in relation 

to M÷, would be dominant and that therefore the 
minimum dispersion would occur near t = 2  ( 1 / / ' =  
AA+2/AA+I) , cf. Willis (1960). However, it appears 
that, although the divergence and the 'Darwin width' 
of the monochromator  system are both small, 
nevertheless there is sufficient relaxation from 
parallelism to allow train to come closer to 1. 

It should be noted from above that, for our present 
purposes, we have ignored the contribution associ- 
ated with the physical size of the specimen crystal. 
Its functional dependence on 0c may be quite com- 
plex, see Mathieson (1984b), also McIntyre (private 
communication). 
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